YEONSU JUNG

Postdoctoral Fellow, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA jung@seas.harvard.edu yeonsu-jung.github.io <u>Google scholar profile</u>

EXPERIENCE

2021- Present	Postdoctoral Fellow, Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA Research: Entanglement of filaments and design principles of animal architecture.
	Supervisor: Prof. Lakshminarayanan Mahadevan
2020-2021	Postdoctoral Fellow, Rowland Institute, Harvard University Cambridge, MA, USA Research: Experimental fluid dynamics of texture surfaces (e.g., shark skin) for drag reduction Supervisor: Dr. Shabnam Raayai-Ardakani
2019-2020	Postdoctoral Fellow, Department of Mechanical Engineering, Seoul National University Seoul, South Korea Research: Physics of granular matter and design principles of mud nests. Supervisor: Prof. Ho-Young Kim

EDUCATION

2014-2019	PhD in Mechanical Engineering Seoul National University, Seoul, South Korea
	Thesis: Optimal design principles in biological transport systems Supervisor: Prof. Ho-Young Kim
2012-2014	MS in Biomedical Engineering Gwangju Institute of Science and Technology, Gwangju, South Korea Thesis: Laser speckle decorrelation in living tissues Supervisor: Prof. Euiheon Chung
2008-2012	BS in Mechanical Engineering Pohang University of Science and Technology, Pohang, South Korea

PUBLICATION (*: CO-FIRST AUTHORS)

2024 Phase Transitions in Rolling of Irregular Cylinders and Spheres Daoyuan Qian, Yeonsu Jung, L. Mahadevan arXiv: 2407.19861

2023 Entanglement Transition in Rod Packings
Yeonsu Jung, Thomas Plumb-Reyes, Hao-Yu Greg Lin, L. Mahadevan
arXiv: 2310.04093, 2023
Accepted for Publication in Proceedings of the National Academy of Sciences (As of Dec 12, 2024)

This paper discusses our discovery and assessment of entangled phase of rod packings, like a bird's nest. I developed a highly sophisticated image processing scheme to obtain accurate and reliable rod geometry data from x-ray computerized tomography (x-ray CT) images. This novel discovery of entangled phase will give better insight on the evolutionary biology regarding animal architecture and on the design and manufacturing of soft robotics, textile technology, reconfigurable architecture, etc. **This work has drawn interests from my colleagues and I have been invited to give a colloquial talk by Bard College (Apr, 2023), Michigan Technological University (Sep, 2023), and Northeastern University (Sep, 2024).**

Active Entanglement Enables Stochastic, Topological Grasping Kaitlyn Becker, Clark Teeple, Nicholas Charles, Yeonsu Jung, Daniel Baum, James C Weaver, L. Mahadevan, Robert Wood. Proceedings of the National Academy of Sciences **119**, e2209819119 (2022)

This paper reports *robotic tentacles* that utilize active entanglement for stochastic, topological grasping. My contribution to this work was to process x-ray CT images of *tentacles* to get the curvature information, and to calculate measures of entanglement to explain how physical entanglement helps with grasping actuation. Contrary to conventional grasping robots, our robotic tentacles are capable of collect soft and fragile objects, which can be more useful in deep sea exploration and sample collection. **This work has drawn public interest and has been introduced in media including** The Verge (<u>https://www.theverge.com/2022/10/26/23424420/robot-tentacle-gripper-rubber-filaments-mr-jelly-hands</u>), CNET (<u>https://www.cnet.com/science/bizarre-tentacle-robot-looks-like-it-emerged-from-the-matrix/</u>), and Popular Science (<u>https://www.popsci.com/technology/harvard-tentacle-robot/</u>).

2022 Thermodynamics of Hygroresponsive Soft Engines: Cycle Analysis and Work Ratio

> Beomjune Shin, Yeonsu Jung, Munkyeong Choi, Ho-Young Kim Physical Review Applied **18**, 044061 (2022)

This paper studies thermodynamic aspects of humidity-driven soft engines. We initiated establishing a model for the ideal thermodynamic cycle for humidity-driven engines, like Carnot engine for heat engines, to provide a theoretical framework to assess thermodynamic efficiency of naturally-occurring and man-made hygroscopic actuators. **This work has been introduced in APS News on Dec**, **2022** (https://www.aps.org/publications/apsnews/202212/plants.cfm).

2022 Evaporative Capillary Rise

Jungtaek Kim, Yeonsu Jung, Ho-Young Kim Physical Review Fluids **7**, L032001 (2022)

This paper studies a capillary, open-channel flow in the presence of severe evaporation. We investigated the contact angle-dependent evaporative flux and its effect on the hydrodynamics of the evaporative fluid in an open channel. The theoretical model constructed here can lay a foundation for understanding the evaporative capillary rise dynamics occurring in biological porous media (e.g., skin micro-wrinkles, leaf stomata) as well as simple open channels adopted in heat pumps.

2021	Soft Artificial Electroreceptors for Non-Contact Spatial Perception
	W. J. Song*, Y. Lee*, Yeonsu Jung * , YW. Kang, J. Kim, JM. Park, YL. Park, HY. Kim, JY. Sun Science Advances 7, sciadv.abg9203 (2021)
	In this paper, we report a soft and wearable sensor inspired by stingray's electroreceptors. As a co-first author, I mainly worked on the development of theoretical research and computation for the optimal design and performance of the stingray-inspired wearable sensor. This work has drawn public interest and has been introduced in media including Chosun Ilbo, the largest media group in South Korea (<u>link</u>).
2021	Avian Mud Nest Architecture by Self-Secreted Saliva
	Yeonsu Jung, Sohyun Jung, Sang-im Lee, Wongjung Kim, Ho-Young Kim Proceedings of the National Academy of Sciences 118 , e2018509118 (2021)
	We report the design principles behind the structural stability of avian mud nests. From a mechanical testing with Barn Swallow's nests, we measured, with custom tensile tester for granular samples, the tensile strength of the nests is over 100 times larger than that associated with Barn Swallow's weight. The conclusion of this study explains the biophysical limit on mud nesters' weight and leads to possible applications in advanced 3D printing technology. In addition, this work has drawn public interest and has been introduced in media including Chosun Ilbo, the largest media group in South Korea (<u>link</u>).
2020	Ionic Spiderwebs
	Y. Lee* W. J. Song*, Yeonsu Jung, H. You, MY. Kim, HY. Kim, JY. Sun Science Robotics 5 , eaaz5405 (2020)
	In this paper, we report an electroadhesive actuator using ionic hydrogel inspired by spiderweb's functionality. I mainly worked on mathematical modeling on how water drop is attached/detached from a string and on sensing and actuating objects by using electric fields. This work has drawn public interest and has been introduced in media including Physics World Research Update (<u>link</u>).
2019	Optimal Diameter Reduction Ratio of Acinar Airways in Human Lungs
	K. Park*, Yeonsu Jung * , T. Son, YJ. Cho, N. L. Jeon, W. Kim, HY. Kim PLOS ONE 14 , eaaz5405 (2019)
	This paper studies the design principles in deep regions (acinar airways) of human lungs; the main question is how diffusive transport in those narrow airways in deep lungs can be optimized for maximal oxygen transport. As a co-first author, I worked on the development of mathematical formulation of the optimal operation of the human lungs collaborating with experimentalists and a medical doctor.
2018	Poro-Elasto-Capillary Wicking of Cellulose Sponges
	J. Ha, J. Kim, Yeonsu Jung, G. Yun, DN. Kim, HY. Kim Science Advances 4 , eaao7051 (2018)
	This paper studies the complex interplay between elasticity/plasticity and capillarity in flows in cellulose sponges. My contribution was to analyze Environmental Scanning Electron Microscopy images to obtain statistics of pore sizes, and develop a simple computational model to explain the merging of micro-pores in cellulose sponges. This study has been introduced in Nature Research Highlight (https://www.nature.com/articles/d41586-018-04010-w).

2016	Capillarity Ion Concentration Polarization as Spontaneous Desalting Mechanism
	S. Park*, Yeonsu Jung*, S. Y. Son, I. Cho, Y. Cho, H. Lee, HY. Kim, S. J. Kim
	Nature Communications 7 , 11223 (2016)
	This paper studies capillarity flow with electrophoretic potentials and possible explanation for the spontaneous desalting mechanism in sea plants. As a co-first author, I developed a simple mathematical model to explain the interplay between electric charge and capillary flows. I also participated in the image analysis of experimental results.
2013	Three-Dimensional Point Spread Function of
	Surface Plasmon-Coupled Emission Microscopy
	Yeonsu Jung, Euiheon Chung
	Proceedings of SPIE, Nano-Bio Sensing, Imaging, and Spectroscopy, 88790D (2013)
	This conference proceeding numerically studies the three dimensional point spread function of super resolution microscopy based on surface plasmon phenomena.
2012	Overcoming the Resolution Limit Using Stripped Patterns: Structured Illumination Microscopy
	Y. Koh, E. Juna, Yeonsu Juna, E. Chuna
	Physics and High Technology 21 , 21 (2012)
	This physical and technological review deals with the principles of super-resolution microscopy using structural illumination and its broad application in biomedical sciences.

PRESENTATIONS

2024	Entanglement Transition in Random Roc Packings Network Science Institute, Northeastern University, MA, USA
	(<u>https://www.networkscienceinstitute.org/talks/yeonsu-jung</u>) Sep 11, 2024
2023	Entanglement Transitions in Rod Packings Physics Colloquium Department of Physics, Michigan Technological University, MI, USA Sep 28, 2023
2023	From Curiosity to Inventions: Exploring the Design Principles of Biological Soft Matter Physics Colloquium Department of Physics, Bard College, NY, USA Apr 14, 2023
2023	Entanglement in Filamentous Networks American Physical Society March Meeting 2023 (Mar 5-10, 2023) Las Vegas, Nevada, USA Mar 8, 2023
2019	Mathematical Model of Acinar Airway Design in Human Lungs

ASME-JSME-KSME Joint Fluids Engineering Conference 2019 (July 28-Aug 1, 2019) San Francisco, California, USA Aug 1, 2019

2018	Formation of Viscoelastic Liquid Bridges in the Soil by Drying of Root Mucilage
	The 71st Annual Meeting of the American Physical Society Division of Fluid Dynamics (Nov 18-20, 2018) Atlanta, Georgia, USA Nov 18, 2018
2018	Mathematical Optimization of Root Arrangement for Maximal Water Uptake From Soil The 12th European Fluid Mechanics Conference (Sep 9-13, 2018) Vienna, Austria Sep 1, 2018
2017	Optimal Design of Artificial and Real Roots for Water Uptake The 70th Annual Meeting of the American Physical Society Division of Fluid Dynamics (Nov 19-21, 2017) Denver, Colorado, USA Nov 20, 2017
2016	Visualization and Measurement of Laser-Induced Thermocapillary Flow in a Liquid Drop The 6th International Multidisciplinary Conference on Optofluidics (July 24-27, 2016) Beijing, China July 25, 2016
2016	Mathematical Model for Optimal Water Uptake by the Fibrous Root 9th International Symposium on Nature-Inspired Technology (Jan 13-15, 2016) Daejeon, South Korea Jan 15, 2016
2015	Optimal Root Arrangement of Cereal Crops The 68th Annual Meeting of the American Physical Society Division of Fluid Dynamics (Nov 22-24, 2015) Boston, Massachusetts, USA Nov 22, 2015
2015	Theoretical Analysis for Capillary Ion Concentration Polarization ASME-JSME-KSME Joint Fliuds Engineering Conference 2015 (July 27-31, 2015) Seoul, South Korea July 30, 2015
2015	Three-Dimensional Point Spread Function of Surface Plasmon-Coupled Emission Microscopy

Nano-Bio Sensing, Imaging, and Spectroscopy (Feb 20-23, 2013) Seoul, South Korea Feb 20, 2013

HONORS, AWARDS, CERTIFICATION

- 2021-2022 Abroad Postdoctoral Fellowship (45,000,000 KRW) awarded by National Research Foundation of Korea
- 2014-2016 Superior Academic Performance Scholarship awarded by Seoul National University
- 2008-2010 National Scholarship awarded by National Research Foundation of Korea
- 2005 Bronze Medal, High School Physics Competition awarded by Gwangju Metropolitan Office of Education
- 2000 Craftsman Information Processing awarded by Ministry of Science and ICT (South Korea)

TEACHING EXPERIENCE

Spring 2024	l Wonder Why: Science as a Culture of Curiosity (Gene 1190) Harvard College Program in General Education, Harvard University
Fall 2015	Flow in Life Systems (M2794.003900) Department of Mechanical and Aerospace Engineering, Seoul National University
Spring 2010	Senior Tutor for Calculus (Math 110) Pohang University of Science and Technology
Fall 2010	Senior Tutor for Thermofluid Engineering I (MECH 252) Pohang University of Science and Technology

ACADEMIC MEMBERSHIP

- 2014- Member, American Physical Society (apS)
- 2018- Member, European Mechanics Society (Euromech)
- 2014- Member, Korean Society of Mechanical Engineers (Ksme)

REFERENCES

Lakshminarayanan Mahadevan, Ph. D. lmahadev@g.harvard.edu Professor, School of Engineering and Applied Sciences, Department of Organismic and Evolutionary Biology, Department of Physics, Harvard University, Cambridge, MA

Ho-Young Kim, Ph. D.

hyk@snu.ac.kr Professor, Department of Mechanical Engineering, Seoul National University, Seoul, South Korea

Kaitlyn Becker, Ph. D.

kait@mit.edu Assistant Professor, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA

Jeong-Yun Sun, Ph. D.

jysun@snu.ac.kr

Professor,

Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea

Wonjung Kim, Ph. D.

wonjungkim@sogang.ac.kr Professor, Department of Mechanical Engineering, Sogang University, Seoul, South Korea